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Abstract

This work assesses the numerical robustness (iterative errors) and accuracy (discretization errors) of
the single-phase, pressure-based compressible flow solver developed within the ReFRESCO CFD pack-
age. The objectives of the work are threefold: check the ability to reduce iterative errors to negligible
levels (robustness); estimate the order of grid convergence (accuracy) for integral and local quantities
of interest and compare ReFRESCO solutions with reference data available in the open literature.
Two sets of test cases are selected: three two-dimensional, subsonic, turbulent flows (zero pressure
gradient flat plate flow, bump-in-channel and NACA 0012 airfoil) available at the NASA Turbulence
Modeling Resource; three two-dimensional inviscid flows over a circular-arc (bump) that correspond to
subsonic, transonic and supersonic conditions that have been addressed in the open literature.
Grid refinement studies have been performed for all test cases using sets of geometrically similar grids
that allow a reliable estimation of the observed order of grid convergence.
The robustness of the code is demonstrated since iterative errors can be reduced to values close to ma-
chine accuracy for (almost) all test cases. Insufficiently iteratively converged solutions of the non-linear
problem increase the contribution of iterative errors and leads to inconsistent estimations of the exact
solution.
Observed orders of grid convergence depends on the test case, selected quantity of interest and grid re-
finement level. ReFRESCO results are consistent with the reference data available in the open literature,
but numerical oscillations can appear at shocks and geometric discontinuities.
Keywords: Solution Verification, Pressure-based solvers, Computational Fluid Dynamics

1. Introduction
Nowadays, Computational Fluid Dynamics (CFD)
is a numerical tool commonly used in industrial ap-
plications [16]. In CFD, a numerical method is
developed to simulate a fluid flow behaviour in a
desired application, whether it is on a combustion
chamber, over a wing, and so on. The governing
equations of fluid motion are a system of partial dif-
ferential equations (PDE) composed by the Navier-
Stokes equations, which represent the conservation
laws of mass and momentum. However, due to their
complexity they are only analytically solved for sim-
ple cases [1].

One discretization technique typically employed
is the Finite Volume Method (FVM), which trans-
forms the governing flow PDE into algebraic equa-
tions by dividing the domain of interest in finite vol-
umes [12]. The choice of primary flow variables, i.e.,
variables that are directly computed from the PDE,
further categorizes these numerical algorithms. One
possible alternatives is: pressure-based solvers [11].

In pressure-based solution techniques, which were

first employed in incompressible flows [13], the mass
conservation equation is modified and combined
with with momentum to yield an equation for pres-
sure [12].

Computing pressure from the continuity equation
has attracted many research efforts, like [2, 11] to
mention a few. The reason for that is related with
physical aspects that are commonly referred to in
the literature by the dual role of pressure. As ex-
plained in [11], in low-speed flows, pressure acts
exclusively on the velocity field to enforce mass
conservation since density is constant. On the
other hand, in high-Mach number flows, velocity
variations are small compared to the flow’s veloc-
ity magnitude, which means that pressure mainly
acts on density to satisfy mass conservation. At
intermediate-speed flows, pressure acts on velocity
and density alike. Thus, changes in pressure are
finite and relevant throughout all speeds, making
this flow quantity very interesting to consider as
the main variable in all-speed flow algorithms [7].

Recently, a compressible pressure-based version
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of ReFRESCO was presented [5, 6]. ReFRESCO is
a CFD code designed for naval and offshore appli-
cations developed by MARIN (Maritime Research
Institute Netherlands), in collaboration with other
organizations around the world [10]. Most common
practical problems in the Naval engineering field
consider fluid incompressibility since the working
fluid is water. However, certain applications like
slamming or sloshing may involve multi-phase flows,
where compressibility effects of the gaseous phase
might be relevant. Accurate capturing of such phys-
ical phenomenon is the end-goal of ReFRESCO up-
date, which is comprised of various steps.

This article follows up on the works of [5, 6] as
an assessment of the numerical properties of Re-
FRESCO for compressible flows aiming at expand-
ing their evaluation in more test cases than what
has been done so far. More precisely, this work will
focus on the following properties: robustness, by
analysing the iterative convergence and accuracy,
through order of grid convergence studies in Solu-
tion Verification exercises, according with [3], to lo-
cal, integral, and surface flow quantities.

In total, simulations will be carried out on two
sets of benchmark test cases: three two-dimensional
(2D), subsonic, turbulent flows (flow over a flat
plate with zero pressure gradient, over a bump-in-
channel and over the NACA0012 airfoil); three 2D
inviscid flows over a circular arc (bump) in sub-
sonic, transonic and supersonic conditions. The vis-
cous test cases are taken from [14], while the other
is commonly addressed in the literature [11, 2].
Since reference data is available in the literature
for the selected cases, this article also features a
code-to-code comparison with the solutions from
ReFRESCO and those of other codes.

This paper is structured as followed: section 2
presents the mathematical and numerical formula-
tions, as well as relevant information about each
test case. Section 3 presents the results for the iter-
ative convergence, order of grid convergence studies
and code to code solution comparison. Finally, this
article ends in section 4 with the main conclusions.

2. Implementation
2.1. Mathematical model
The mathematical problem is composed by the
Navier-Stokes equations, continuity and total en-
ergy conservation principle for a single-phase, un-
steady flow of a compressible fluid. Closure of the
before-mentioned system is achieved considering an
ideal gas working fluid.

In turbulent flows simulations, the partial dif-
ferential equations are averaged with the Favre-
averaged procedure, as proposed in [18] for a statis-
tically steady flow. The resulting Reynolds-stress
term are handled assuming the Boussinesq hypoth-
esis and the eddy-viscosity is computed with the

on-equation model of Spalart & Allmaras [15].

2.2. Solution procedure
Following the Finite Volume Method formulation,
the differential transport equations are solved in
control volumes, or cells, that divide the entire do-
main. On the volume integration of convective, dif-
fusive, transient, and source terms, the Gauss’ di-
vergence theorem is applied. As a result, the fluxes
of the transported quantities are approximated in
one point for each unique face of the control vol-
ume through the mid-point rule. Additionally, the
convection terms of all transport equations were lin-
earized with Picard’s method. As a result, 5 linear
systems of equations, plus an algebraic equation
for density, are obtained and solved with a segre-
gated approach. The linearization of the convective
fluxes, plus the uncoupling of the equations and the
deferred corrections, build up a non-linear residual.
The iterative convergence of the non-linear problem
was stooped (most of the times) when the normal-
ized residual dropped to values lower than 10−8 of
the L∞ norm.

2.3. Discretization schemes
Numerical schemes are required to express the face’s
fluxes only in terms of cell values. The diffu-
sive fluxes were always discretized with the central-
differences scheme including non-orthogonality and
eccentricity corrections. Lastly, the Gauss’ theo-
rem is used to determine the gradient of dependent
variables at the cell centres. Whereas, for the con-
vective flues the numerical schemes used are:

• In the flat plate and NACA0012 test cases, the
Fromm scheme with the harmonic limiter [17]
was used;

• The limited QUICK [9] scheme is present in all
simulations of a viscous flow over a bump;

• Four convection schemes were used in the in-
viscid bump test cases: CDS blended with 10%
UP, fully UP, HARM and QUICK schemes.

2.4. Test Cases
2D Zero Pressure Gradient Flat Plate: Figure 1
illustrates the domains dimensions and boundary
conditions for the 2D turbulent flow over a flat
plate with zero pressure gradient test case taken
from [14]. For this test case, unitary density was
assumed. The Reynolds number, based on a ref-
erence length L = 1m, is Re = 5 × 106 and the
undisturbed Mach number is Ma = 0.2 using a ref-
erence temperature of Tref = 300K.

Two sets of geometrically similar grids are pre-
sented in figure 2. A set of 5 Cartesian grids [14],
set N, and a set of 5 orthogonal multi-block grids,
set IM. Moreover, both sets have a fixed refinement
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Figure 1: Domain and boundary conditions accord-
ing to [14] for the calculation of the two-dimensional
flow over a flat plate.

ratio of ri = 2 between each consecutive grid. How-
ever, two extra grids, one between the two most re-
fined grids and another twice as coarse, were added
in both sets in order to improve the reliability of
the grid convergence properties evaluation.

Set IM

Figure 2: Illustration of the coarsest grids (ri = 16)
of grid sets N and IM. Two-dimensional flow over a
flat plate.

2D Bump-in-channel: The viscous bump test case
is another problem taken from [14]. The uniform
flow’s Mach number is equal to Ma = 0.2, based
on the reference temperature Tref = 300K, and
the Reynolds number is Re = 3 × 106, using both
unitary length and density. The reference pressure
is Pref = 86100Pa. Domain dimensions along with
boundary conditions are presented in figure 3. The
results for this test case were obtained in only one
grid set, set N, from [14], which features 5 non-
uniformly spaced grids.

Figure 3: Domain and boundary conditions accord-
ing to [14] for the calculation of the two-dimensional
viscous flow over a bump.

2D NACA0012 Airfoil: The final test case of the
first set is the flow around a NACA0012 airfoil. The
airfoil mathematical definition was slightly modified

so that its chord, c, equals to 1m as explained in
[14], and the no-slip adiabatic wall boundary condi-
tion was applied on the surface of the airfoil. The C-
shaped domain illustrated in figure 4 has the farfield
Riemann boundary condition applied 500m away
from the airfoil surface. As far as incoming flow
conditions are concerned, the chord-based Reynolds
equates to six million, for ρref = 2.1264kg/m3, and
the undisturbed Mach number is Ma = 0.15, so the
flow is essentially incompressible. Simulations were
performed for three incoming flow angle of attack,
α, 0o, 10o and 15o.

Only one grid set, set N, will be used and it
was taken from at [14]. It is composed of 5 grids
with a fixed grid refinement ratio of 2 between each
one. Figure 4 depicts the coarsest grid and a zoom
around the airfoil shape. All grids share a cluster-
ing of cells at the leading and trailing edges, which
is extended to the wake.

Figure 4: Illustration of the coarsest grids (ri =
16) of grid set N. Two-dimensional flow over the
NACA0012 airfoil.

2.5. Inviscid flow
The second set of test cases feature the 2D inviscid
flow in a channel over a bump for three flow regimes:
subsonic (Ma = 0.5), transonic (Ma = 0.675) and
supersonic (Ma = 1.65). This test case is found
in the open literature and it has been used to test
pressure-based solvers [2, 11]. Although outside
the typical speed range for maritime and offshore
applications, this case was selected to test the ro-
bustness and accuracy of ReFRESCO in the pres-
ence of sharp variations of flow properties, like the
Mach number in shocks. Out of the testing goal
is the complex aspects of viscous flow, like shock-
boundary layer interactions.

Domain’s geometrical characteristics and bound-
ary conditions depend on the incoming flow Mach
number. The subsonic and transonic regimes share
the same domain and boundary conditions and are
depicted in the top picture of figure 5, while in
the bottom illustration is clear a reduction in the
bump height (from 0.1m to 0.04m) for the super-
sonic regime, as well as, the different boundary con-
ditions. The boundary conditions for the three test
cases are also presented in 5.

Two grid sets were used for this test case. How-
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Subsonic and transonic flows

Supersonic flow

Figure 5: Domain and boundary conditions for a
two-dimensional inviscid fluid flow over a circular-
arc (bump).

ever, their distinction is only justified due to the
geometrical variations of the bump itself since they
have equal number of cells and present the same
topology. For that reason, only the sparsest grid of
the supersonic set is illustrated in figure 6. Each
set is composed of 9 geometrically similar non-
uniformly spaced Cartesian grids and the sparsest
grid of each set is illustrated in figure 6. This fact,
in turn, explains the need to add finer grids for the
sets of this test case. However, in the supersonic
test case, there were still some doubts about the
extrapolations performed with data obtained from
grids with 1 ≤ ri ≤ 4 and so extra grids were gen-
erated reaching a refinement level of ri = 0.5. For
the supersonic set, three extra grids were generated
reaching a refinement level of ri = 0.5. For the su-
personic set, three extra grids were generated, be-
cause there were still some doubts about the extrap-
olations performed with data obtained from grids
with 1 ≤ ri ≤ 4, reaching a refinement level of
ri = 0.5.

Figure 6: Illustration of the coarsest grids (ri = 44)
of subsonic and transonic grid set and supersonic
grid set. Two-dimensional inviscid flow over a
bump.

2.6. Grid convergence
One of the goals of the present study is to determine
the grid convergence properties of the flow solver.
The method proposed in [3] is used to estimate the
numerical uncertainty of integral or local flow quan-

tities. At least three grids are required to estimate
the numerical uncertainty using least-squares fits to
power series expansions.

All calculations were done in double-precision for-
mat, so the round-off error contribution to total
numerical error is irrelevant. Furthermore, if the
non-linear problem iterative convergence criteria is
respected, the same can be assumed for the iterative
error. As a result, an estimate for the discretization
error εφ, of a flow quantity φ, is given from:

εφ = φi − φo = ahpi (1)

where a is a constant, p is the observed order of
grid convergence, hi is the typical grid cell size, φi
and φo are both flow quantity values in a grid with
the typical cell size hi and the estimate of the exact
solution, respectively.

However, equation 1 is only suitable for a set of
data obtained in the asymptotic range and mono-
tonic behaviour are present. To improve the appli-
cability of the error estimation process, three other
error estimators are explained in [3].

The final objective of these procedures is to de-
fine the uncertainty levels of a set of data for a de-
sired quantity. The uncertainty values are defined
so that the exact solution is contained within an in-
terval with 95% confidence. Besides considering the
computed error’s estimate, uncertainty values also
take into account a safety factor, which accounts for
the behaviour of the input data.

When presenting the results for the grid conver-
gence studies of chosen flow quantities, the fits per-
formed with eq. 1 are referenced by the value ob-
tained for p with 2 significant figures, while the fixed
order expressions results are identified with only 1
significant figure. Lastly, if the equation with two-
terms expression in [3] represents the best fit, it will
appear referenced as ”ah+bh2” in the legend of the
plots.

By nature the results from these studies are de-
pendent on the number of grids used and their den-
sity. To assess this dependence, four different alter-
natives for the estimation of observed order of grid
convergence were chosen: pa uses the data from the
5 finest grids of each set; pb uses the solutions from
the 3 finest grids using grid doubling; pc is obtained
with the data from the 4 finest grids using grid dou-
bling; and pd uses the solutions from 5 grids using
grid doubling.

3. Results
3.1. Quantities of interest
The quantities of interest analysed for the viscous
flow test cases are: skin friction coefficient Cf , pres-
sure coefficient Cp, total drag coefficient CD and lift
coefficient CL.

Whereas the inviscid flow over a bump test cases,
the following quantities were selected: mach num-
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ber Ma, stagnation temperature To and pressure
P .

All integrals are calculated with a second-order
mid point rule; and a third-order cubic interpola-
tion is used to determine the values of Cf , Cp, Ma,
To, and P at specific locations.

3.2. Iterative Convergence
Figure 7 depicts the L∞ residual norm in the grid
with ri = 4 of the 2D bump-in-channel test case
as a function of the non-linear iteration counter.
The changes of dimensionless variables between two
consecutive iterations are also reflected in the same
plot. The simulation was run with the complete LU
factorization for the linear system of the pressure-
correction equation.

The noisier convergence of the energy equation is
bellow the convergence criteria so it is of little con-
cern. However, the spotlight of this analysis is on
the decrease of rate of convergence with the sim-
ulation time. For example, for the figure shown,
around 13 000 iterations of the non-linear system
were required to drop the residuals from 106 to 107

while, from that point until the specified conver-
gence criteria, 50 000 more were necessary. Here,
the changes between each consecutive iteration are,
generally, one order of magnitude higher than the
residual, thus enhancing the sensitivity of the solu-
tion to the simulation time.

The origin of the degradation of the iterative rate
is attributed to the fact that the near-wall cell size
is replicated in the wake, where the eddy viscosity
is non-zero. Diffusive effects scale with the inverse
square of the cell spacing multiplied by the eddy
viscosity

(
∝ µt/(∆xi2)

)
, hence these terms become

very large with the small near-wall distances used
in this test case.

Figure 7: Illustration of the iterative convergence
(L∞ norm) in the grid with ri = 4.0 of set N. Two-
dimensional viscous flow over a bump.

The increasingly lower rates of convergence with
respect to the residual evolution obtained for this

test case motivated the following experiment: com-
pare an insufficiently converged solution with a so-
lution that respected the convergence criteria. More
precisely, one solution was taken from a point in
convergence history whereby the highest value of
L∞ norm was, approximately, 4× 10−6.

So, figure 8 showcases the skin friction coeffi-
cient Cf distribution along the plate+bump on the
finest grid of the viscous bump test case. The red
line represents the insufficiently converged solution
(NConv.) and the green-coloured line the converged
solution (Conv.).

It is evident that the lack of iterative convergence
resulted in an overestimation of Cf . Nonetheless, to
further emphasize the importance of reducing the
iterative error, figure 9 presents an order of grid
convergence study to Cf at x ≈ 0.63m, using the
two solutions of ReFRESCO. The estimation was
performed with the data from the four finest grids,
using grid doubling, and the uncertainty bars are
showcased for the finest grid of the set. Only the
simulation on the finest grid was insufficiently con-
verged and the solutions on the remaining grids re-
spected the iterative convergence criteria.

From the results in 9, it is clear the negative
impact of the finest grid solution in the data set
since the uncertainty bars encompass values be-
tween 5.7%, of the finest grid solution of Cf . Fur-
thermore, the red colour fitted lines do not intersect
any grid solution. The first-order grid convergence
estimated for the insufficiently converged data set
indicates that the estimator, which assumes a set
value for “p” equal to 1 ensured the best fit to the
solution of the four finest grids. This is an exam-
ple where reporting of the computed order of grid
convergence should be done carefully.

Figure 8: Skin friction coefficient Cf distribution
on the finest grid of set N. Two-dimensional viscous
flow over a bump.

3.3. Viscous flows test cases
3.3.1 Grid convergence studies

The results of grid convergence studies to CD and
Cf at x = 0.970084m are depicted in figure 10.
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Figure 9: Grid convergence studies for the skin
friction coefficient Cf at x = 0.6321975m. Two-
dimensional viscous flow over a bump.

Both quantities were analysed in the grid sets N and
IM of the flat plate test case. The lines included
in the plots represent the best fit, as proposed in
[3], to each discrete data set input. However, the
estimated uncertainty bar corresponds only to the
fit performed for the 5 finest grids (pa).

The results for the two quantities are consistent
between each grid set, which means that the uncer-
tainty bars of the finest grids overlap. Additionally,
they also showcase the deviation of the solutions
obtained in coarser grids from the fitted lines based
on fine grids results as the estimated order of grid
convergence deteriorates if the coarsest grid ri = 16
is included (pd). Both sets extrapolate the solution
for a cell size zero to, approximately, the same value
if the grid with ri = 16 is not included in the es-
timation. The error constant, a, is slightly larger
for the IM set than for the set N. Lastly, while the
value of p is the same between both sets when eval-
uating locally Cf , set IM shows lower order of grid
convergence for the integral quantity CD than set
N.

Under viscous bump test case conditions, figure
11 presents three alternative estimates of p using
grid doubling for Cf and Cp at 20 selected locations
on the plate+bump surface. The symbols at null
values of p indicate that the best fit to the data is
obtained with the two terms expansion. The two
plots suggest the following trends:

• The best fit for the solutions at the leading
edge for Cp are obtained with the two terms
expansions. Whereas, the same estimator is
used for the results of Cf in the grids with 1 ≤
ri ≤ 8 at the trailing edge.

• The estimated values of p for Cf show more
scatter than the ones for Cp. Not only that,
but the estimated order of grid convergence is
generally higher for the pressure coefficient.

• Unexpectedly, the inclusion of the coarsest grid
solution does not always deteriorate the esti-
mate of p.

Drag Coefficient

Skin friction coefficient

Figure 10: Grid convergence studies for CD and Cf
at x = 0.970084m. Two-dimensional flow over a
flat plate.

3.3.2 Code-to-code comparison

Figure 12 compares the distributions of Cf for two
viscous flow test cases: flow over a flat plate and
over a bump. The results of ReFRESCO are com-
pared with the solutions (available at [14]) from
other flow solvers, CFL3D and FUN3D.

The differences between ReFRESCO results and
the comparative data is represented in dashed lines
and quantified on right-axis of figure 12. To comple-
ment the comparison, the uncertainty values com-
puted from ReFRESCO using data from the three
grids with ri = 1, ri = 2, and ri = 4, calculated
in selected points throughout the plate were also
included and they too are with respect to the right-
axis.

Graphically, ReFRESCO solutions are in line
with other codes results. However, for the flat
plate test case, the differences between ReFRESCO
and the other two solvers are larger than the esti-
mated numerical uncertainty. Generally, the dis-
parities in the skin friction coefficient are around
4× 10−6, while the uncertainty levels are close to
2× 10−7. Nonetheless, without estimating the nu-
merical uncertainty of the FUN3D and CFL3D so-
lutions, there is no guarantee that the results of
ReFRESCO are inconsistent. The latter was not
obtained because only the distribution of Cf in the
finest grid is given at [14].

While, in the viscous bump test case condi-
tions, the highest differences are at the leading and
trailing edges, which pose numerical singularities.
Nonetheless, the quantification of the mismatches
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Lift Coefficient

Skin friction coefficient

Figure 11: Estimation of p for Cf and Cp at 20 loca-
tions along the solid wall. Two-dimensional viscous
flow over a bump.

averages 5 identical digits. Furthermore, these dif-
ferences correspond to the numerical uncertainties
estimated for ReFRESCO along the bump. As a
result, the solution from ReFRESCO is consistent
with the results available in the open literature.

The results for Cf on the upper surface of the
NACA0012 airfoil and pressure coefficient Cp dis-
tribution on both sides of the foil at α = 15o are
presented in figure 13. Besides the results from Re-
FRESCO, the plots also include solutions from the
CFL3D solver [14] and experimental data from two
sources: Ladson, et al. [8], with Rec = 6 × 106;
and Gregory, et al. [4], with Rec ≈ 3 × 106. The
numerical solutions were obtained in second finest
grid used in NACA0012 case study.

The solutions of ReFRESCO are in great agree-
ment with the results from CFL3D flow solver for
both quantities. Both codes predict a separation
bubble in the upper surface of the foil at approx-
imately x/c = 92%. Similar to the trends in the
viscous bump test case, the main discrepancy be-
tween ReFRESCO and CFL3D is in the numerical
influences of the change in boundary conditions in
the trailing edge of the foil (from no-slip solid wall
to symmetry).

The experimental data reported in [4] seems to
be in line to the CFD solutions despite the differ-
ence in the Reynolds number. However, the re-
sults obtained by Ladson, and co-workers [8], for
Rec = 6 × 106 show considerable differences in the
pressure peaks at the leading edge and in pressure
levels across the first half of the upper surface. It is
believed that these results may not sufficiently rep-

Figure 12: Skin friction coefficient Cf distribu-
tion on the finest grid of sets available at [14].
Two-dimensional flow over a flat plate (top plot).
Two-dimensional viscous flow over a bump (bottom
plot).

resent a two-dimensional flow because the aspect
ratio of model used was only 1.333, as stated in
[14].

3.4. Inviscid flow test cases

The results presented for the second set of test cases
feature: Mach Ma number distributions along the
bottom walls of the domain and grid convergence
studies to stagnation temperature To and pressure
P at selected locations on the bottom boundary
downstream of the second geometrical singularity.
The grid convergence properties are evaluated with
the 4 different schemes addressed in sub-section
2.3. Additionally, the truncated power series ex-
pressions explained in 2.6 are fitted to the data of
the four most refined grids, being the grids with
1 ≤ ri ≤ 2.75 for subsonic and transonic flows and
grids with 0.5 ≤ ri ≤ 1 for the supersonic con-
ditions. On the other hand, the results for the
Mach number distributions will only be presented
for the harmonic scheme (HARM) in grids with sim-
ilar densities as the ones found in [11], i.e. the grids
with ri = 5.5 and ri = 11.

3.4.1 Subsonic flow

The Ma distribution in figure 14 for the subsonic
conditions shows little influence of the grids refine-
ment level. As expected, the largest differences are
concerned with the resolution of the geometric sin-
gularities, at the start and end of the bump, which
deteriorates with grid coarsening. Nonetheless, the
distributions obtained with ReFRESCO are similar
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Skin friction coefficient

Pressure coefficient

Figure 13: Cf distribution on the upper surface and
Cp results around the airfoil for α = 15o. Two-
dimensional flow over the NACA0012 airfoil..

to those reported in [11].
Figure 14 also presents the convergence with grid

refinement for To and P . All schemes, but the
UP scheme, extrapolate to values of To close to ex-
pected theoretical solution, To is constant for adi-
abatic flows of an ideal gas. However, the incon-
sistency of UP results is not reflected in the grid
convergence of P . There, all four schemes are con-
sistent and most of the estimated orders of grid con-
vergence match the theoretical order of the schemes.

3.4.2 Transonic flow

Figure 15 presents the results for the Mach number
distribution at the horizontal boundaries and the
convergence with grid refinement for To and P at
x = 0.7m on the lower boundary for the transonic
conditions.

The Ma distributions confirm that the numeri-
cal settings chosen for these simulations give rise
to transonic flow conditions since, at the inlet,
Ma < 1, then reaches values close Ma = 1.5 on
the bump surface, and a shock restores subsonic
conditions at the outlet of the domain.

Naturally, the resolution of the shock interface is
greatly enhanced with the increase of grid density.
The sharp discontinuity origins numerical oscilla-
tions at the back of the shock. However, those typi-
cally affect the same number of cells thus the region
affected by these numerical oscillations tends to de-
crease with grid refinement. The same trends are
also observed in [11].

The results for the grid convergence of To with
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Figure 14: Mach distribution on the horizontal
boundaries and grid convergence studies for stag-
nation temperature and pressure at x = 0.55m on
the lower wall. Two-dimensional subsonic inviscid
flow over a bump .

the HARM and QUICK schemes follows the trends
observed in figure 14. However, for the transonic
conditions monotonically convergent solutions are
computed for all schemes.

Considering the pressure, the solutions for the
three schemes, CDS+0.1UP, HARM and QUICK,
are similar in the finest grids. Despite the devi-
ations of the UP solutions, all convective schemes
estimate approximately the same exact solution.

3.4.3 Supersonic flow

Equivalent results to the previous two figures are
shown in figure 16, but for the supersonic test case.

The flow, in fact, is fully supersonic, i.e. Ma >
1 throughout both walls, which validates changing
the pressure imposition boundary condition to the
inlet over the outlet of the domain (see sub-section
2.5).

Among the three undisturbed flow Mach number,
the present one is the more demanding for the accu-

8



Mach number

Stagnation temperature

h
i
/h

1

T
o
/T

o
i(
x
=

0
.7

)

0 1 2 3 4 5 6 7 8 9 10 11 12
0.994

0.995

0.996

0.997

0.998

0.999

1

HARM

p= 0.7

CDS+0.1UP

p= 1.4

QUICK

p= 1.1

UP

p= 0.6

Pressure

h
i
/h

1

P
/P

re
f(

x
=

0
.7

)

0 1 2 3 4 5 6 7 8 9 10 11 12
1.044

1.045

1.046

1.047

1.048

HARM

p=2

CDS+0.1UP

p= 1.0

QUICK

p= 1.5

UP

ah+bh
2

Figure 15: Mach distribution on the horizontal
boundaries and grid convergence studies for stag-
nation temperature and pressure at x = 0.55m on
the lower wall. Two-dimensional transonic inviscid
flow over a bump .

racy of the solution. Two oblique shocks are gener-
ated, at the leading and trailing edges of the bump,
and the first is reflected on the top wall where the ef-
fect of grid coarsening is more negetivly felt. More-
over, numerical oscillation are present at the back of
each shock. Like in the transonic conditions, those
affect the same number of cells so in finest grids of
this test case the anomalies are encompassed to a
very small region of the domain. The same trends
is ReFRESCO simulations are present in solutions
found in [11].

In the supersonic conditions, none of the con-
vection schemes converge with grid refinement to
the expected solution of To, To/Toi = 1. Not only
that but, the estimate of the exact solution is dif-
ferent for every single scheme. Also, for this flow
quantity, the the addition of extra fine grids (with
ri < 1) does not eliminate the solutions oscillatory
behaviour.

Interestingly, there is still consistency in the ex-
trapolated values for pressure. It should be men-

tioned that, the only forces acting of these flows are
pressure forces. As a result, the consistency of pres-
sure greatly benefits the convergence properties of
the force coefficients.
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Figure 16: Mach distribution on the horizontal
boundaries and grid convergence studies for stag-
nation temperature and pressure at x = 0.55m on
the lower wall. Two-dimensional supersonic invis-
cid flow over a bump .

4. Conclusions
In this article, a study of the robustness and accu-
racy of the single-phase, pressure-based, compress-
ible flow solver in ReFRESCO, was performed. The
iterative and discretization convergence properties
were analysed in six different two-dimensional test
cases, three viscous flow test cases taken from [14]
and three cases featuring an inviscid flow, as seen in
[2, 11]. Comparative data was taken from the previ-
ous sources to contrast with the solutions obtained
by ReFRESCO.

The main conclusion to derive from the results of
this work were:

• The compressible flow solver is robust as the
residuals of the non-linear problem were con-
verged to values close to machine accuracy,
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from the 45 unique grids used, only in the
sparsest grid of the NACA0012 an iteratively
converged solution was not obtained.

• Extending the near-wall cell size at the solid
surfaces to the wake region degrades the rate
of convergence with the simulation time.

• Grid convergence properties are dependent on
the convection scheme, inlet flow regime, quan-
tity of interest and incoming flow angle of at-
tack.

• Concerning the inviscid flow test case, estima-
tions of the exact solution are not always con-
sistent between the four convection schemes.
This is mostly evidenced in the supersonic test
case. The discrepancies are tied to the loss
of stagnation temperature (that should remain
constant) due to the geometric singularities
and shocks. However, the pressure is consis-
tent across all schemes.

• ReFRESCO yields consistent solutions in the
two grid sets of the flat plate exercise, i.e. the
error bars obtained for the two finest grids so-
lutions intersect. Including the solutions from
excessively sparse grids deteriorates the ob-
served order of grid convergence. Insufficiently
converged solutions of the non-linear problem
leads to inconsistent estimations of the exact
solution.

• The solutions obtained with ReFRESCO are in
great graphical agreement with solutions from
other CFD solvers, like CFL3D and FUN3D.
However, some differences between the solu-
tions of the three solvers are higher than the es-
timated numerical uncertainty of ReFRESCO.
More definitive statements concerning the con-
sistency of ReFRESCO are only possible if
information regarding the uncertainty of the
comparative data is available.

• Moreover, ReFRESCO accurately predicts so-
lutions in subsonic, transonic and supersonic
conditions, when comparing to other pressure-
based solvers. However, oscillations can appear
close to geometrical singularities and shocks.
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